
Programmer’s Guide to MOZ (Moo in OZ).

Robin Lee Powell

This manual is for MOZ (MOO in Oz) version 1.0.
Copyright c© 2003 Robin Lee Powell

Permission is granted to distribute and modify as long as credit is given. See
the file license.txt in the main MOZ distribution for full copyright information.

i

Table of Contents

. 1

1 General Issues . 2
1.1 Introduction . 2
1.2 Localized Strings . 2

2 Class Creation . 3
2.1 Class Creation Introduction . 3
2.2 Creating A Class File . 3
2.3 Required Attributes And Features . 3

2.3.1 Attributes . 3
2.3.2 Features . 4

2.4 Common Methods . 5

3 Control Objects . 6
3.1 Control Verbs . 6

4 Verbs . 7
4.1 Verb Methods . 7

4.1.1 Verb Methods Are Always Public 7
4.1.2 Verb Method Default Arguments 7
4.1.3 Verb Method Result Records . 7

4.2 Verb Record Structure . 8
4.2.1 Parse Records . 9

4.2.1.1 Parsing Directives . 10

5 Core Classes. 12
5.1 Core Methods . 12

5.1.1 MozBase Methods . 12
5.1.2 Storage Methods . 14
5.1.3 Server Methods . 16
5.1.4 Connection Methods . 17
5.1.5 LanguageStrings Methods . 17
5.1.6 Parser Methods . 18
5.1.7 Described Methods . 18
5.1.8 Located Methods . 19
5.1.9 Mobile Methods . 19
5.1.10 Location Methods . 19
5.1.11 Container Methods . 20
5.1.12 Player Methods . 20
5.1.13 Exit Methods . 21

ii

5.1.14 Gate Methods . 21
5.1.15 Terminus Methods . 22
5.1.16 Control Methods . 22
5.1.17 ClassControl Methods . 22

6 Unsorted . 24

7 Command Index . 25

8 Method Index . 26

1

This is the Programmer’s Guide for MOZ (Moo in OZ). MOO is Mud Object
Oriented. MUD is Multi-User Dungeon or Dimension. In general, a MUD is a
multi-user text-based virtual environment. For information on MUDs in general, see
http://www.godlike.com/muds/ or your local search engine. For information on MOOs,
see http://www.moo.mud.org/moo-faq/.

Oz is a multi-paradigmatic language that happens to not suck. See
http://www.mozart-oz.org/.

http://www.godlike.com/muds/
http://www.moo.mud.org/moo-faq/
http://www.mozart-oz.org/

Chapter 1: General Issues 2

1 General Issues

1.1 Introduction

UNFINISHED

1.2 Localized Strings

To deal with MOZ’s requirement to be able to output to users in multiple languages, a
MOZ programmer should never use Oz strings for output at all. Instead a structure called
a Localized String is used. This is a record, with a feature for each language (using whatever
short code is defined in the Server object, such as en for English). Each feature holds a
string that is the string that should be output for a user that uses that language. An
example:

string(
en: "A sample string.\n"
lb: ".i le mupli seltcidu\n"

)

However, for output of strings from program code (as opposed to output of strings set
by players directly, such as those stored in names and descriptions), you shouldn’t enter
these strings directly. Instead, you should first add the strings to the LanguageStrings
object using the ***UNFINISHED*** command. The tell method on the Player object
will treat any atom by itself as a key into the database on LanguageStrings, making it easy
to use these strings in your code.

The reason to do this is it makes it much easier for others to translate everything in the
MOZ to a new language if everything is collected on one object and easily retrievable.

Chapter 2: Class Creation 3

2 Class Creation

UNFINISHED Here go some notes about what classes are and why you would want to
create one.

2.1 Class Creation Introduction

UNFINISHED Stuff about why you’d want to create classes (especially since this is the
fundamental thing that makes one a MOZ programmer), stuff about class items and how
to use them to control classes.

2.2 Creating A Class File

[Variable]create class named className
Use this command to create a class you can edit. Actually, it technically only creates
an object of class ClassControl, which you then use to write and compile the class.

[Variable]write class className
Takes text until you enter "EOF" on a line by itself, and puts that text in the class
file. You must have run create class for this to work.

[Variable]compile class className
Compiles a class written using write class. Note that if your class has certain types
of bugs, this will hang. You will be able to continue your activity in the MOZ, though,
and try again if you like.

2.3 Required Attributes And Features

UNFINISHED

Test.

2.3.1 Attributes

name A localized string containing the object’s name in the MOZ.

storageRef
The storageRef attribute just holds an object reference record for the MOZ’s
central Storage object. Every object in the MOZ needs to talk to Storage at
some point.

languageStringsObjectRef
Holds the global set of localized strings, which all system object should use.

hasProperName
A boolean declaring if the object’s name is a proper name (like Alice or Bob)
or a generic name (like couch or door or puppy).

Chapter 2: Class Creation 4

verbs A place to store the list of input verbs that this class recognizes. Note that
there are special methods to deal with this structure; it should not be touched
directly.

publicMethods
This is a list of methods we let everybody see. In particular, this list is used to
give basic capabilities to an object’s location, and vice versa.

The list is updated using addPublicMethod.

serverRef The serverRef attribute just holds an object reference record for the MOZ’s
central Server object.

2.3.2 Features

ozName The ozName feature; holds an Oz name value unique to the current object.

exports The exports feature holds a list of 2-tuples detailing the attributes to be handled
by toRecord and fromRecord. In other words, it lists all attributes that need
to be saved to disk to preserve the state of a member of this class, so it is very
important to fill exports properly.

The 2-tuples are the name of the attribute and its type. Most type atoms are
ignored, but some must be specially handled (i.e. object references, which must
be mediated by the Storage object).

A minimal example:

exports: [
storageRef#objectRef
serverRef#objectRef
languageStringsObjectRef#objectRef hasProperName#bool
name#string

]

A more complicated example, with multiple inheritance:

exports: {Append
{Record.toListInd

{Adjoin
{List.toRecord exports Location.exports}
{List.toRecord exports Mobile.exports}

}
}
% Our local exports
[language#atom outputPort#notPersistent]

}

featExports
featExports is just like exports, except for features instead of attributes.

A minimal example:

featExports: [ozName#name capabilityDict#dict]

Chapter 2: Class Creation 5

methodList
The methodList feature just holds a list of the names of the methods that the
wrapper should make capabilities for, i.e. the externally available methods.
Note that upgrade should not be here, because it’s handled specially.
A minimal example:

methodList: [
init start stop ozName className toRecord fromRecord revoke
hasProperName getName setName deLocalize getVerbs addVerb

]

A more complicated example, with multiple inheritance:
methodList: {Append

{Merge
{Sort Location.methodList Value.’>’}
{Sort Mobile.methodList Value.’>’}
Value.’>’

}
% Our local methods.
[

tell setLanguage getLanguage sayVerb setStorage
reloadVerb languagesVerb languageVerb helpVerb

]
}

className The class name, stored as an atom:
className: ’MozBase’

capabilityDict
The capability dictionary for this object.

wrapper The active object wrapper procedure for this object.

2.4 Common Methods

start The start method is run everytime a new object is created, which includes when
it is first loaded into the MOZ or upgraded, as well as at other times in some
cases.
The start method is normally either passed the boolean isForUpgrade feature if
the start is being run during an upgrade (which can require special processing)
or nothing at all.

stop The stop method works like the start method in all respects except that it is
run before the object is shut down or upgraded.

Chapter 3: Control Objects 6

3 Control Objects

Every object that is created causes the creation of a control object so that the player can
do arbitrary things to the object they just got. This section describes some details about
control objects that a programmer needs to know.

Control objects are of class Control, which is a child of class Mobile.

3.1 Control Verbs

Control objects don’t use the normal verbs of their class, because they need to provide
functionality base on the class they are controlling.

However, we don’t want every verb available on the base object to be available on the
control object (you can’t go through a control object for an exit, for example) and more
importantly, the verbs availble on the control object must not be available on the controlled
object (we don’t want to let just anybody link an exit, for example).

So, here’s how you extend the control functionality of control objects made for a class
you’ve created. It’s actually fairly simple.

First, create the verbs as normal, but instead of using addVerb, use addControlVerb.
Second, and this is very important, make sure that the verb methods for control verbs

are not public.
Thirdly, instead of using self when referring to the object being controlled, use

@controlled.

Chapter 4: Verbs 7

4 Verbs

Methods that do the processing for a verb call have special default arguments that are sent
to them, as well as needing to return a specialized result value.

4.1 Verb Methods

4.1.1 Verb Methods Are Always Public

Except for the special case noted in See Section 3.1 [Control Verbs], page 6, methods used
for a verb must always be publicly accessible, or they won’t be usable. This just means
adding a call like this to the init method on the class:

{self addPublicMethod(method: myVerb) }

4.1.2 Verb Method Default Arguments

caller The objectRef for the calling object.

player The objectRef for the player object.

language The language of the verb itself, for when the player is able to run verbs in
multiple languages (i.e. help has language en, sidju has language lb).

result The result of the verb, a record that indicatats success or failure of the method,
among other things. It is described thoroughly in the next section. If the result
is not set, success is assumed.

force If force is set to true, no checking should be done to see if the current object is
the one the verb call was intended for: it is assume that this object is, in fact,
the correct choice. Such checking would be things like name and alias matched,
for example.

4.1.3 Verb Method Result Records

The result argument gets filled with a with a record similar to the pseudo-code one below:

result(
status: success|failure|other -- default success
certainty: float from 0.0 through 1.0 -- default 1.0
comments: <localized string> -- default nil, only relevant to failures

)

There are a couple of problems that this structure is intended to address.

The first is that we want the option of delivering a specialized failure message from
whichever object and method knows best what the problem was if things didn’t work. The
difficulty there is that many failure will be from objects that really are *not* the one the
verb call was intended for, so we don’t want to return their errors to the user.

Chapter 4: Verbs 8

The second problem is that on object might honestly not be sure if a verb call, that
would in fact be successful, is meant for itself. For example, if an alias is used, or the name
matches but only in a case-insensitive fashion, those matches should introduce some doubt
as to whether the object in question is really the one the verb call was intended for.

The solution to these is the certainty field. The certainty field is a number from zero
(0) to one (1), inclusive, which indicates how certain the verb method is that it was the
intended target for the original verb call. In the case of target uncertainty, the status should
be ’other’.

The certainty field is ignored if the status is success.

If no status field was set to success out of a group of verb method checks, the result
records are sorted by certainty. The highest non-zero value whose status is *not* failure
is called again with the force argument set to true. This selects, out of the methods that
weren’t sure they was being talked to, the method that was most sure it was the intended
target. Verb methods should skip all certainty checks when force is set to true.

If there are only failures, the failure with the highest certainty has its comments field
de-localized and sent to the player to help them figure out what happened.

Note that non-verb methods often also have result arguments. If so, they will often
not return a certainty feature as part of their result record, because that sort of thing is
the verb method’s job to determine.

4.2 Verb Record Structure

Please note that this first section is largely not something you need to use: the addVerb
method allows you to avoid most of the technical details. The section on Parse Records, on
the other hand, is quite important.

Verb records are used to associate particular types of user input with methods on objects.
This means that when you type "list languages", a verb record somewhere (on your Player
object, in fact) is used to compare against that to find out what method to call (in this
case, the ’languagesVerb’ method).

Verb records are stored in the verbs attribute. The verbs record has features for each
language that the object has verbs on, like so:

verb: allVerbs(
en: <verb records>
lb: <verb records>

)

The label of the record, in this case allVerbs, is irrelevant, as are the labels of all records
in this section, unless specificially mentioned otherwise.

The verb records themselves contain one feature for each verb word (that is, the first
word of input) that the object wants to accept, like so:

en: verbs(
help: <verb record>
languages: <verb record>

)

Chapter 4: Verbs 9

Each actual verb record contains the language the verb was called in1, and the parsing
structure:

help: help(
language: en
parses: [

helpVerbParseName(
method: helpVerb
endOfInput: nil

)
]

)

The parses feature and its list are both complicated and unusual, and are discussed in
the next section.

4.2.1 Parse Records

The parses list is something that is very unusual for a MUD: it allows each verb to define
how its arguments are parsed, and in fact requires that each verb do so.

Normally, a MUD understand some basic linguistic structures of one language, and
attempts to shoe-horn whatever the player says into what it understands. For example, it
might understand the English concepts of subject, preposition, and object, and will attempt
to understand all input in those terms.

MOZ, on the other hand, allows each verb in each language to define how it wishes its
input to be broken up. It attempts to do this in a way that requires as little programming
knowledge as possible, but it’s still not exactly simple.

The parses feature is, in fact, a list of records. This is used so that one verb word can
access different methods, depending on how the rest of the line is parsed.

Important : the label of the individual parse records, such as helpVerbParseName above,
must be unique within the verb in question on whatever object the parse record is being
added, as addVerb uses that label to decide what to override when you update the verb.

The record structure for the records inside the parses list is as follows: the method
feature contains the name of the method, whatever feature is left after that feature is
removed (there should be only one) is used as the first parsing directive.

In this example:
help: verb(

language: en
parses: [

playerHelpVerb(
method: helpVerb
endOfInput: nil

)
]

1 Yes, this is redundant, but there are parts of the internal code that only get to see the verb record, not
the entire verbs structure

Chapter 4: Verbs 10

)

the first, and only, parsing directive is endOfInput, which sees if the end of the user
input has been reached2. This means that nothing, other than whitespace, can follow the
verb word "help" for this parsing structure to match.

On the other hand, we have:

list: verb(
language: en
parses: [

playerListLanguagesVerb(
method: languagesVerb
matchWord: matchWord(

word: "languages"
rest: rest(

endOfInput: nil
)

)
)
playerListHelpVerb(

method: helpVerb
matchWord: matchWord(

word: "help"
rest: rest(

endOfInput: nil
)

)
)

]
)

which matches either the word languages, then end of input, or the word help followed
by end of input. In the two cases, different verbs are called.

In some cases, there will be parse records inside a parse directive; in this case, matchWord
has a feature, rest, which is used to match everything after whatever word matchWord
is being used to match. These parse sub-records work just like the general parse records
described here, except they cannot be lists, the must be single records, and they should not
include a method feature.

4.2.1.1 Parsing Directives

Directive Name Arguments Effect

endOfInput nil Matches end of character input.

2 this is equivalent to the end of the line entered by the user at this time

Chapter 4: Verbs 11

string any 1 atom Bind the longest string (i.e. series of space-seperated
words) it can find to the atom passed to it, which is
passed to the verb’s method. A word is a list of
anything that Char.isGraph returns true for. Be-
cause of this, string pretty much always matches
the entire rest of the line. So, for example, "string:
inputString" will pass the argument inputString to
the verb’s method containing the rest of the line.

stringUntil until string
rest

Fills string with words until it reaches a word that
matches the word (or list of words) stored in until.

matchWord word rest The word argument should contain a string with the
word that needs to be matched in the input. rest
contains a full parse tree.

getWord word rest The word is filled with the next word in the input.
rest contains a full parse tree.

plus first second This is the choice operator. Evaluates first as a
full parse tree. If the parsing of first succeeds,
returns that. Otherwise, tries to parse with second,
returning that if succesful. Otherwise fails.

multiMatchWord words
wordFound
rest

Attempts to match anything from the list of strings
in words. Whichever word is actually matched
is given to the method in the atom named by
wordFound. rest is the parse tree for everything
after that word.

article wordFound
rest

Same as multiMatchWord with words set to the con-
tents of the articles attribute on the Parser object.

mayHaveArticle wordFound
rest

Same as article, but accepts strings that don’t start
with an article as well.

bracket left right
rest

Matches anything entirely inside the brackets defined
by left and right. Works if both left and right
are words or if both are single characters, but not
for a mix of the two. Note that it does not deal
with nesting in any real way, and will only succeed if
the first word or character in that part of the parse
matches left and the last matches right, regardless
of what’s in the middle.

Chapter 5: Core Classes 12

5 Core Classes

5.1 Core Methods

This is a list of methods on the core classes, for use in your programs. If it’s not listed
here, that’s probably because the documentation is out of date, not for security reasons
or anything; MOZ is a capablitiy-based system, if you want to shoot yourself in the foot,
that’s fine. Please inform the author of all missing entries.

Note that this is a very brief treatment of the various methods; details should be gleaned
from the source code.

Note further that verb methods are not listed here, because they cannot be called directly,
and they can be deduced from the list of commands anyways.

5.1.1 MozBase Methods

[Method on MozBase]init ozName storageRef serverRef languageStringsObjectRef
Initializes the attributes storageRef, serverRef and languageStringsObjectRef and
the feature ozName to the values passed.

[Method on MozBase]start
None Does nothing; here to be over-ridden in other classes.

[Method on MozBase]stop
None Does nothing; here to be over-ridden in other classes.

[Method on MozBase]ozName ozName
Returns the Oz Name associated with the current object in the passed variable.
Would normally be named getOzName, but this method is used very frequently, and
the value can’t be changed so there would be no corresponding setOzName anyways.

[Method on MozBase]className className
Returns the Oz Name associated with the current object in the passed variable.
Would normally be named getClassName, but this method is used very frequently,
and the value shouldn’t be changed so there would be no corresponding setClassName
anyways.

[Method on MozBase]toRecord record
toRecord is a very important method that runs through the elements of the exports
feature and constructs a record using the information therein. This record can be
pickled, saved to disk, and later loaded in with fromRecord.

[Method on MozBase]fromRecord record convert objectRef
fromRecord is the inverse operation to toRecord. It takes the output of toRecord and
sets attributes appropriately. Note that this is a pure procedure: it is only called for
its side effects. convert is the procedure to convert stored attributes of type objectRef
into something useful, gotten from the Storage object. objectRef is used to return
an object reference to the newly initialized object, with all capabilities.

Chapter 5: Core Classes 13

[Method on MozBase]revoke method capability newCapability
Revokes the current capability on the given method, assuming that the argument ca-
pability matches it. The new capability on that method is returned in newCapability.

[Method on MozBase]hasProperName hasProperName
Returns a boolean declaring if the object’s name is a proper name (like Alice or Bob)
or a generic name (like couch or door or puppy).

[Method on MozBase]setHasProperName hasProperName
Sets the hasProperName to true or false.

[Method on MozBase]addVerb language verb parse
Adds a verb to the objects verbs record, dealing with things like over-writing the
same verb parse, dealing with multiple parses of the same verb, and the fact that the
whole verb record system is very baroque.

language The language the verb applies in.

verb The verb word itself ("help", "look", whatever).

parse The parse record to add. Note that this record will over-ride any other
parse record for the same verb with the same label, so it’s important that
it be reasonably unique.

[Method on MozBase]getName name
Standard variable get.

[Method on MozBase]getArticledName name
Returns the object’s name with the appropriate article in front of it.

[Method on MozBase]getArticledStarterName name
Like getArticledName, but adjusts for the article being the first word of a sentence if
a language requires that.

[Method on MozBase]setName name
Standard variable set.

[Method on MozBase]getVerbs verbs
Standard variable get.

[Method on MozBase]deLocalize inputString outputString language
Returns a bare string from a localized string, based on a language argument.

Arguments:

inputString
The string to be de-localized, in string(lang: <string>) format as usual.

outputString
A normal Oz string.

language Optional, the language to de-localize into.

Chapter 5: Core Classes 14

[Method on MozBase]selfMatch string certainty language
The object returns a certainty, as a value from 0 to 1, that it is the object being
referred to by the string in question. The string should be localized.

Possible Certainty Values:

1.0 A perfect string match, including case.

0.9 Matches only after converting both strings to lower case (i.e. a caseless
match).

[Method on MozBase]addPublicMethod method
Adds the given atom to the list of public methods for this object (i.e. methods for
which capabilities are given out freely).

[Method on MozBase]enhanceStorage storageRef
Adds the capabilities on the given storageRef to the object’s current capability set
for the Storage object.

[Method on MozBase]selfReference selfRef
Returns a complete reference for the current object, including all capabilities. Very
insecure!

[Method on MozBase]publicSelfReference selfRef
Returns a complete reference for the current object, with capabilities for only the
methods in publicMethods.

[Method on MozBase]printedList stringList string
Takes the list of strings in stringList and concatenates them together as might be
expected in a natural language string (i.e. in English, using commas and "and").

[Method on MozBase]printedObjectList objectList string
Like printedList, but the list is a list of object references, from which names are
extracted.

5.1.2 Storage Methods

[Method on Storage]start args modules serverObjFileNum realStart newMoz
Extracts command line arguments from args, sets up links to external Oz modules,
and if serverObjFileNum is passed, set the internal file number where the Server
object is known to reside to that number. This only happens when the MOZ is being
re-initialized.

newMoz is used to tell the method that this is the initialization of a completely new
moz.

[Method on Storage]sync None
Syncs all MOZ objects to disk.

[Method on Storage]stop None
Saves all MOZ objects to disk.

Chapter 5: Core Classes 15

[Method on Storage]info None
Outputs debugging information; currently all commented out.

[Method on Storage]init ozName fileNumToOzName storageRef
languageStringsObjectRef

Initializes a new Storage object, mostly using MozBase,init. fileNumToOzName is
a dictionary that normally only contains a mapping from the number 1 to the new
Storage object’s Oz name. Initializes some other dictionaries.

[Method on Storage]loadClasses None
Compiles and loads all the MOZ’s .class files.

[Method on Storage]loadObject fileNum objectRef init
This method loads an object from the disk by its number (using the fileNumToOz-
Name dictionary). It returns the object record in objectRef.

[Method on Storage]saveObject objectWrapper ozName
This method saves the object information to disk. Note that objectWrapper is just
the Active Object wrapper, not the standard object reference object.

[Method on Storage]createObject className objectRef ozName init
Creates an object, returning a standard object reference in objectRef.

[Method on Storage]getClass className class
Returns the class code for the given className

[Method on Storage]upgradeObject objectRef className newObjectRef
Upgrades the given object to the given class, returning newObjectRef. Note that this
could be the same class name as before, but the class itself has been re-loaded in the
mean time. In fact, that should be the most common type of upgrade.

[Method on Storage]getObjectFileNum objectRef fileNum
Take an object reference record and returns the file number associated with that
object reference. Not for general use!

[Method on Storage]getServerObjFileNum serverObjFileNum
Returns the file number for the Server object. Not for general use!

[Method on Storage]setServerObjFileNum serverObjFileNum
Sets the file number for the Server object. Not for general use!

[Method on Storage]getObjectFromFileNum fileNum objectRef
Retrieves an object given the file number it is stored in. Not for general use!

[Method on Storage]objectRefFromRecord convert
This is the procedure that fromRecord needs to instantiate attrs of type ’object’. Full
details are in the source.

This is so far from being for general use that it’s not even funny.

Chapter 5: Core Classes 16

[Method on Storage]logLevel level
Set the current logging level to level. Logging levels are, in order from most to least
verbose, debug, info, warn, error, and critical.

The default is warn. For whatever level is selected, that level of log message and
above (above meaning "less verbose" or "more severe") are printed.

[Method on Storage]getConnectionModule module
Returns a copy of the Connection module. That’s the Oz Connection module, NOT
the MOZ Connection class. Used by the Gate and Terminus classes.

[Method on Storage]getPickleResult url pickleResult
Treats url as the URL to a file containing an Oz pickle, and returns the result of
attempting to un-pickle that file. Used by the Gate class.

[Method on Storage]writePickleToFile file value
Writes the given value, as an Oz pickle, to the file given. The file is stripped of “/”
and “\” characters, and placed under the “pickle” directory under the server’s root
directory.

[Method on Storage]getCapabilitiesFromOzName ozName capabilities
Returns a full set of capabilities for the object associated with the ozName given.

[Method on Storage]getObjectFromOzName ozName objectRef
Returns an object refrence, including a full set of capabilities, for the object associated
with the ozName given.

[Method on Storage]getObjectFromFileNum fileNum objectRef
Returns an object refrence, including a full set of capabilities, for the object associated
with the file number given. Please don’t use this.

[Method on Storage]upgradeObject objectRef className
Forces an upgrade of the object in question.

[Method on Storage]upgradeAll done
Upgrades *all* objects in the MOZ. Well, OK, all the ones Storage knows about
(which is everything but special user-created stuff, for which you’re on your own).

[Method on Storage]createClass className controlRef result
Creates a ClassControl object for the given className, after checking that no such
class already exists, and returns a reference to the new object in controlRef.

[Method on Storage]writeClassFile className string result
Writes the class file associated with the given className using the string given as
the entire text of the class file.

[Method on Storage]loadClass className
Recompiles the class named className. Not that the actual compilation is threaded
off.

Chapter 5: Core Classes 17

5.1.3 Server Methods

[Method on Server]init ozName storageRef languageStringsObjectRef
storageObjectRef startRoom

As per usual, except for storageObjectRef, which passes extra, better capabilities to
the Server object, and startRoom, which passes and object reference to the player
starting room.

[Method on Server]start args modules hold realStart
As with Storage, except hold, which returns a variable that remains unbound until
the server is shut down.

realStart is used to say that this is the real start call, rather then the normal one that
happens when the object is created.

[Method on Server]stop
Stops the server; also binds hold from the start method.

[Method on Server]handleLogin acceptObject playerRef outputPort acceptProc
Deals with a user’s attempt to log in, including creating new player objects if neces-
sary. More details in the source.

[Method on Server]upgradeStorage newClass convert
Storage calls this to get the server to upgrade it during an upgradeAll call. No user
servicable parts inside.

[Method on Server]changePassword player oldPassword newPassword
If the stored password for the login name player matches oldPassword, changes it to
newPassword.

5.1.4 Connection Methods

[Method on Connection]start socket storageRef modules parser outputStream
Handles the connection, reading from the TCP/IP port and passing to the parser,
and then back.

5.1.5 LanguageStrings Methods

[Method on LanguageStrings]init ozName storageRef
Nothing unusual here.

[Method on LanguageStrings]getLanguageString key string
Simple dictionary lookup on the languageStrings dictionary. If the key passed as an
argument does not exist, a blank, globally localized string is returned.)"

[Method on LanguageStrings]setLanguageString key string
Dictionary write on the languageStrings dictionary. Any languages not covered by
the string argument are left as they were.

Chapter 5: Core Classes 18

[Method on LanguageStrings]resetLanguageStrings
Reloads all of the default language strings. Note that if new languages have been
added, they will not be overwritten; only the languages that ship with the server
by default will be, and only in the original strings; no newly added strings will be
affected.

5.1.6 Parser Methods

[Method on Parser]start storageRef modules outputPort serverStop player
languageStringsObjectRef

Starts a new parser objcet. outputPort is the Socket object that is used for sending
output to the player. player is an object reference to the player object.

[Method on Parser]parseOutVerb string result
Just extracts the first word from the input string, which is then treated as the verb
word.

[Method on Parser]parse input
First tests to see if the first character, by itself, is a verb, using matchVerbs, then
tries the whole first word, again using matchVerbs. If that fails, complains to the
character.

[Method on Parser]runVerb verb rest result
Attempts to match the input verb against any verb it can get its hands on, start-
ing with the player object, then the player’s contents, then the player’s room, then
everybody in the room.

This method does not implement the verb record parsing strategy; it calls verb-
ParseRest for that.

verb contains the verb word, rest contains the rest of the input, and matched is set
to true if a match was found.

[Method on Parser]verbParseRest verbParse rest verbMethod language result
Implements parsing of verb records. Takes the parse segment of a verb record, and
returns a record named after the verb word with the various arg1:, arg2: ... elements
in it, filled according to the parse record.

verbParse The parse record for the verb.

language The language of the verb match we’re working against.

result The results of the parse, as a record named after the verb word with
features named according to the parse record.

[Method on Parser]eval input
Evaluates the input as a piece of Oz code.1

1 Currently isn’t implemented as a verb; this needs to be fixed.

Chapter 5: Core Classes 19

5.1.7 Described Methods

[Method on Described]init ozName storageRef name description
Adds name and description attributes to the standard init.

[Method on Described]getDescription description
Standard variable get.

[Method on Described]setDescription description
Standard variable set.

[Method on Described]deLocalize inputString outputString language
Returns a bare string from a localized string, based on a language argument, using
the MozBase version of the same methed but passing a value for the Server class. The
Server information allows using the Server’s default language value as a fallback.

5.1.8 Located Methods

[Method on Located]init location
Adds location to Described’s list.

[Method on Located]getLocation location
Standard variable get.

5.1.9 Mobile Methods

[Method on Mobile]setLocation location
Standard variable set.

5.1.10 Location Methods

[Method on Location]init contents
Adds contents information to Described’s list.

[Method on Location]addToContents objectRef
Adds the given object to the current contents list.

[Method on Location]getContents contents
Standard variable get.

[Method on Location]getContentsString string
Returns a string that contains a list of the names of all the objects in the object’s
contents list.

[Method on Location]removeFromContents objectRef
Removes the given object from the current contents list.

Chapter 5: Core Classes 20

[Method on Location]wantToGet newLocation origRecord newRecord
This is called by other objects who desire to get one of the objects from our contents
list. See [get on Location], page 20. origRecord is a minimal object reference to the
object that newLocation wants.

[Method on Location]wantToGive oldLocation objectRef result
This is called by other objects who desire to give us one of the objects from their
contents list. See [give on Location], page 20. result is set to true if we accept the
object, false otherwise.

[Method on Location]searchByObjectName name except objectRef result
language

Returns the object in our contents best matching the given name, else returns a
standard result in result. except is used to exclude the calling object from the
searching, as this will cause a hang.

[Method on Location]announce string except
This is called by other objects who desire to have a string presented to the tell methods
of all objects in this location (at least, those with tell methods).

The except argument takes an object reference and causes the string to not be
presented to that object. This is very important, because if you call announce and
the object making the announce call has a tell method, the announce will hand trying
to re-enter that object. So, always put the object calling announce in the except
argument!

[Method on Location]get fromLocation objectRef
Gets an object from another object, which must be a descendant of location.

First we call getFrom on the from location, then put the object that that call returns
into our contents list.

Note that objectRef is limited reference to the object we want to get.

See [wantToGet on Location], page 19.

[Method on Location]give toLocation objectRef
Gives an object to another object, which must be a descendant of location.

First we call wantToGive on the from location, then remove the object that we give to
that call from our contents list if the call returns true. See [wantToGive on Location],
page 20.

5.1.11 Container Methods

[Method on Container]init
Merges the inits of Location and Thing; Location’s init is run first.

Chapter 5: Core Classes 21

5.1.12 Player Methods

[Method on Player]init
Runs the init methods for Location and Mobile (in that order). Sets language and
outputPort to nil.

[Method on Player]start modules outputPort realStart
Sets the outputPort object variable.

realStart is used to say that this is the real start call, rather then the normal one that
happens when the object is created.

[Method on Player]stop
Nothing special here, except during upgrades.

[Method on Player]setStorage storage
Just used to set the storage attribute with a new capability set. Used for wizardry
and dewizardry and the like.

[Method on Player]tell string language
Sends a string to the user. The string can either be a single string or a list of strings.
Any individual string can be either a localized MOZ string or a single atom. If it
is an atom, that atom is looked up on the LanguageStrings object and the result is
output.

[Method on Player]setLanguage language
Standard variable set.

[Method on Player]getLanguage language
Standard variable get.

[Method on Player]setStorage storageRef
Standard variable set, for storageRef.

[Method on Player]grabInputUntil untilString inputString result
Takes all input entered by the player until the player types the string passed in
untilString. The input is returned in inputString. result is as per usual.

This method can only be called once every thirty seconds, to prevent malicious code
from not letting the player interact with the rest of the MOZ. Further attempts to
call this method will return a failure result instantly.

5.1.13 Exit Methods

[Method on Exit]setDestination destination
Sets the destination for this exit to the object given.

[Method on Exit]setName name
Sets the exit’s name. Also creates verbs corresponding to the new name, so the player
can use the exit.

Chapter 5: Core Classes 22

5.1.14 Gate Methods

[Method on Gate]setDestination destination
Sets the destination for this exit to the object referenced by the pickle stored at given
url.

5.1.15 Terminus Methods

[Method on Terminus]getTicket ticket
Uses the Connection module to return a ticket to itself.

[Method on Terminus]writeTicket file
Uses the writePickleToFile method on Storage to write a ticket for a reference to
itself to the file given (which will be physically stored in the “pickle” directory under
the server root directory).

5.1.16 Control Methods

[Method on Control]getName name
Generates a name based on the name of the underlying controlled object. For example,
if the controlled object is named “Dead Parrot”, this method will return “Control Rod
For a Dead Parrot”. Also updates the Control object’s name attribute.

[Method on Control]selfMatch
Makes sure that its name is set properly, based on the current name of the controlled
object, then runs the normal selfMatch method.

[Method on Control]otherwise
The otherwise method is priviledged in Oz: it is called for any method call that
doesn’t match anything else. It is used here to handle the extensibility of Control
verbs and methods based on the underlying controlled object’s class.

[Method on Control]getMethodList methodList
Returns the combined methods of the Control object and the controlled object.

[Method on Control]getVerbs verbs
Returns getControlVerbs on the underlying object.

[Method on Control]start
Generates a perfect object reference on the controlled object (i.e. one that can never
lose capabilities) using a special capability set from Storage, and sets its name.

[Method on Control]publicSelfReference
Calls selfReference: with Control objects, possession is ten tenths of the law.

Chapter 5: Core Classes 23

5.1.17 ClassControl Methods

[Method on ControlClass]getName name
Generates a name based on the name of the underlying controlled class. Also updates
the Control object’s name attribute.

[Method on ControlClass]selfMatch
Makes sure that its name is set properly, based on the current name of the controlled
object, then runs the normal selfMatch method.

Chapter 6: Unsorted 24

6 Unsorted

• Provided imformation on how to upgrade a class of objects, including the case where
there are new init() attributes on the new class, thus requiring an upgrade then a
seperate set-method call of some kind, probably to a temporary set-method.

• Add objectName or whatever to the verb record info.
• Example verb creation, including the method.
• Examples of ’fun’ objects (meep, wind-up ducky, tame falcon).
• Some documentation on Parsing.oz, or a pointer to it
• Put a list of articles somewhere.
• Document the standard arguments to verb methods.
• Note somewhere that an init method should always be able to accept nothing but

"ozName" and "storageRef", because upgrades will pass only those (and fill them with
nil, expecting fromRecord to fix them).

• Write out how to format a Result field in a verb method.
• Describe all the different export and featExport types (or, rather, copy this info from

the design doc).

Chapter 7: Command Index 25

7 Command Index

C
compile class . 3

create class . 3

W

write class . 3

Chapter 8: Method Index 26

8 Method Index

A
addPublicMethod on MozBase 14
addToContents on Location 19
addVerb on MozBase . 13
announce on Location . 20

C
changePassword on Server 17
className on MozBase . 12
createClass on Storage . 16
createObject on Storage . 15

D
deLocalize on Described . 19
deLocalize on MozBase . 13

E
enhanceStorage on MozBase 14
eval on Parser . 18

F
fromRecord on MozBase . 12

G
get on Location . 20
getArticledName on MozBase 13
getArticledStarterName on MozBase 13
getCapabilitiesFromOzName on Storage 16
getClass on Storage . 15
getConnectionModule on Storage 16
getContents on Location . 19
getContentsString on Location 19
getDescription on Described 19
getLanguage on Player . 21
getLanguageString on LanguageStrings 17
getLocation on Located . 19
getMethodList on Control 22
getName on Control . 22
getName on ControlClass . 23
getName on MozBase . 13
getObjectFileNum on Storage 15
getObjectFromFileNum on Storage 15, 16
getObjectFromOzName on Storage 16
getPickleResult on Storage 16
getServerObjFileNum on Storage 15
getTicket on Terminus . 22
getVerbs on Control . 22
getVerbs on MozBase . 13
give on Location . 20

grabInputUntil on Player 21

H
handleLogin on Server . 17

hasProperName on MozBase 13

I
info on Storage . 15

init on Container . 20

init on Described . 19

init on LanguageStrings . 17

init on Located . 19

init on Location . 19

init on MozBase . 12

init on Player . 21

init on Server . 17

init on Storage . 15

L
loadClass on Storage . 16

loadClasses on Storage . 15

loadObject on Storage . 15

logLevel on Storage . 16

O
objectRefFromRecord on Storage 15

otherwise on Control . 22

ozName on MozBase . 12

P
parse on Parser . 18

parseOutVerb on Parser . 18

printedList on MozBase . 14

printedObjectList on MozBase 14

publicSelfReference on Control 22

publicSelfReference on MozBase 14

R
removeFromContents on Location 19

resetLanguageStrings on LanguageStrings . . . 18

revoke on MozBase . 13

runVerb on Parser . 18

Chapter 8: Method Index 27

S
saveObject on Storage . 15
searchByObjectName on Location 20
selfMatch on Control . 22
selfMatch on ControlClass 23
selfMatch on MozBase . 14
selfReference on MozBase 14
setDescription on Described 19
setDestination on Exit . 21
setDestination on Gate . 22
setHasProperName on MozBase 13
setLanguage on Player . 21
setLanguageString on LanguageStrings 17
setLocation on Mobile . 19
setName on Exit . 21
setName on MozBase . 13
setServerObjFileNum on Storage 15
setStorage on Player . 21
start on Connection . 17
start on Control . 22
start on MozBase . 12
start on Parser . 18
start on Player . 21
start on Server . 17
start on Storage . 14
stop on MozBase . 12
stop on Player . 21

stop on Server . 17
stop on Storage . 14
sync on Storage . 14

T
tell on Player . 21
toRecord on MozBase . 12

U
upgradeAll on Storage . 16
upgradeObject on Storage. 15, 16
upgradeStorage on Server 17

V
verbParseRest on Parser . 18

W
wantToGet on Location . 20
wantToGive on Location . 20
writeClassFile on Storage 16
writePickleToFile on Storage 16
writeTicket on Terminus . 22

	
	General Issues
	Introduction
	Localized Strings

	Class Creation
	Class Creation Introduction
	Creating A Class File
	Required Attributes And Features
	Attributes
	Features

	Common Methods

	Control Objects
	Control Verbs

	Verbs
	Verb Methods
	Verb Methods Are Always Public
	Verb Method Default Arguments
	Verb Method Result Records

	Verb Record Structure
	Parse Records
	Parsing Directives

	Core Classes
	Core Methods
	MozBase Methods
	Storage Methods
	Server Methods
	Connection Methods
	LanguageStrings Methods
	Parser Methods
	Described Methods
	Located Methods
	Mobile Methods
	Location Methods
	Container Methods
	Player Methods
	Exit Methods
	Gate Methods
	Terminus Methods
	Control Methods
	ClassControl Methods

	Unsorted
	Command Index
	Method Index

