
Design Documentation for MOZ (Moo in OZ).

Robin Lee Powell

This manual is for MOZ (MOO in Oz) version 1.0.
Copyright c© 2002 Robin Lee Powell

Permission is granted to distribute and modify as long as credit is given. See
the file license.txt in the main MOZ distribution for full copyright information.

i

Table of Contents

. 1

1 Requirements. 2

2 Security Overview . 3

3 One-Instance Classes . 5

4 Ex-DB Design . 6
4.1 The moz Program . 6
4.2 The new moz Program . 6
4.3 The Parsing Module . 6
4.4 The EnhancedString Module . 6
4.5 The Active Object Wrapper . 7
4.6 The MozCompilation Module . 8
4.7 Object References . 8

5 Class Definitions . 9
5.1 General Class Issues . 9

5.1.1 The start Method . 9
5.1.2 The init Method . 9
5.1.3 The toRecord Method . 9
5.1.4 The fromRecord Method . 9
5.1.5 toRecord, fromRecord, and exports 9
5.1.6 Recognized exports Types in toRecord and

fromRecord . 10
5.1.6.1 Examples . 10

5.1.7 methodList . 12
5.2 The Class Hierarchy . 12
5.3 class MozBase . 13
5.4 class Storage . 13
5.5 class Server . 13
5.6 class Described . 13
5.7 class Located . 14
5.8 class Mobile . 14
5.9 class Location . 14
5.10 class Player . 14
5.11 class Wizard . 14
5.12 class Puppet . 14
5.13 class Container. 14
5.14 class Exit . 14

ii

5.15 class Gate . 15
5.16 class Terminus . 15
5.17 class Connection . 15
5.18 class Parser . 15
5.19 class Control . 16
5.20 class ClassControl . 16

6 Storage Issues . 17
6.1 Loading And Unloading . 17
6.2 Associations . 17

7 MOZ Records . 19
7.1 object records . 19
7.2 verbs records. 19
7.3 string records . 20

8 Security In Detail . 22
8.1 Initial Capabilities . 22
8.2 Getting More Capabilities . 22
8.3 Capability Implementation . 23
8.4 Persistence . 24
8.5 Wizardry . 24

9 Unsorted . 26

1

This is the design documentation for MOZ (Moo in OZ). MOO is Mud Object Oriented.
MUD is Multi-User Dungeon or Dimension. In general, a MUD is a multi-user text-based
virtual environment. For information on MUDs in general, see The MUD Resource Collec-
tion or your local search engine. For information on MOOs, see The MOO-Cows FAQ.

Oz is a multi-paradigmatic language that happens not to suck. See The Main Mozart-Oz
Page.

Note that the requirements document is also incorporated herein, and that this document
is changing in response to actual code decisions, and hence is not strictly a design document.
Oh well.

http://www.godlike.com/muds/
http://www.godlike.com/muds/
http://www.moo.mud.org/moo-faq/
http://www.mozart-oz.org/
http://www.mozart-oz.org/

Chapter 1: Requirements 2

1 Requirements

An informal requirements set for Moo in OZ. Note that these are in no particular order.
They are anchored for reference in those parts of the design document that relate to them.
1.

multiple muds can be joined together transparently
2.

ability to make as many changes on the fly as possible
3.

maximum simplicity for building and coding
4.

not too slow or too memory-hoggy
5.

number of connections limited only by physical issues (bandwidth, memory, etc)
6.

robust access control, within the MOZ, of objects, of internal code, of objects charac-
teristics, of processes, etc.

7.
ability to handle various (spoken) languages

8.
high potentiol for user enjoyment

9.
fault tolerance

10.
ease of debugging

11.
user can see general information, including class code, about objects in the MOZ

12.
ease of testing

13.
ease of modification on the part of new admin, programmers, and builders

Chapter 2: Security Overview 3

2 Security Overview

Capability security is a security model that is most likely entirely different than what you’re
used to. It is simple and elegant and fast. The main drawbacks are that it has the potential
to make it much easier for users to do incredibly stupid things, but that really depends
on how the system is set up, and that it is very hard to bootstrap. The latter is solved
by persistence, see See Section 8.4 [Persistence], page 24. The former is solved in MOZ by
simply not allowing the transfer of capabilities that are innapropriate.

OK, time to step back a bit and explain more about capability security as a concept.
The type of security that you are most probably used to I’m going to call ACL (Access
Control List) security. The way this basically works is that if you want to, say, open a file,
somewhere buried in the operating system is a test that compares your user name to a list
of people allowed to open the file. Or if you’re in a MUD and want to pick up an object,
same thing: somewhere an if statement tests if you should be allowed to do that.

The basic idea with ACLs is that you can always find what it is that you want to access.
File trees have ways to get listings of all the file names, which you can then pass to an open
command of some kind. Rooms have a list of all the objects in them, which you can then
pass to a get command of some kind.

Capability security is completely different. Capability security is based on the idea of a
key to a vault: you either have the key, or you don’t. If you don’t have the key, you can’t
open the vault (at least, not without a whole lot of time and effort; good cryptography,
which MOZ as of this writing only sort of uses, can make the time involved into the trillions
of years).

Better still, in most cases in a capability system you can’t even see the vault (again,
without a lot of time and effort and access to the data in some kind of raw form, such as
access to the disk itself). If you can’t point to the vault or see it or touch it, it’s ridiculous
to talk about opening it: you don’t have the capability to do so at all (hence the name of
this type of security).

Basically, a capability is a reference to some kind of operation on an object (i.e. generally
it’s a reference to a procedure). If you don’t have the capability, and you can’t forge the
capability (because you can’t see the object it’s acting or you can’t guess the capability’s
name/secret/key/whatever), then you can’t access that aspect of the object.

Note that the key analogy holds in other ways: you can copy capabilities, and you can
give them to other objects. This is what leads to the first drawback mentioned above:
players can quite easily "give away the homeworld" Babylon 5 Quotes.

Some effort is made to make this difficult (note that requiring actual Oz programming
to transfer a capability is considered ’difficult’), but it’s part of the nature of the system
that this cannot be stopped.

On the other hand, capabilities can be revoked. In fact, being able to tell an object to
revoke a capability is, itself, a capability in MOZ!

Which leads to one of the other nice things about capabilities: they’re arbitrarily ex-
tendable. You want to make another one, you just program it in and pass it on. Quite
trivial, whereas, in general, ACL-based systems require reworking of at least some of the
system code to add a new ACL.

http://www.keri.paintedhippo.com/quotepage.html#b5

Chapter 2: Security Overview 4

Furthermore, you can pass around a procedure that has a capability inside it that it will
only use once. Since procedures can’t be opened up or de-compiled in Oz, this is quite safe.

An important aspect of capabilities is that, unlike ACL systems, an object can, by
default, do nothing. At least, nothing that involves other objects. This is very important:
hacks of ACL systems often revolve around tricking the ACL into not activating, or believing
a user is someone they’re not, or something. This simply isn’t possible in a capability system:
there’s nothing to trick. To even ask for a capability you don’t have requires a capability!
This motivates the next section, which defines an initial set of capabilities.

For more information, see The Three Parts of Security, Introduction To Capability Based
Security, and An Ode to the Granovetter Diagram.

Note that almost all security in MOZ, is done from an in-language, in-db perspective.
Some aspects of the security rely on ex-DB code (the ActiveObject wrapper in particular),
but these are the exception rather than the rule.

If it’s important enough to you to break into a MOZ that you start eavesdropping
transmissions between MOZs to figure out how Oz encodes its name information, you’re
welcome to hack the thing as far as I’m concerned. Go get laid or something, you’re a loser.

http://www.erights.org/elib/capability/3parts.html
http://www.skyhunter.com/marcs/capabilityIntro/index.html
http://www.skyhunter.com/marcs/capabilityIntro/index.html
http://www.erights.org/elib/capability/ode/index.html

Chapter 3: One-Instance Classes 5

3 One-Instance Classes

There are a number of classes which are instantiated exactly once per server, i.e. there is
exactly one object of each of these classes on each server. These objects are used to store
and manage server-wide persistent values. For example, the Storage object keeps track of
all the files that are used to store objects to disk.

Because of this, I will often refer to the class and the object interchangeably; the Storage
class and the Storage object are largely the same thing in practice, as there is only ever one
Storage object made from the Storage class.

The one-instance classes are listed below, along with a brief description of the types of
data they store.

‘The Storage Object’
The Storage object stores information about the disk files used to store objects
and classes. It stores associations between Oz names and file numbers and
object wrappers and other data. Chapter 6 [Storage Issues], page 17

‘The Server Object’
The Server object stores a list of players and their associated passwords.

‘The LanguageStrings Object’
The LanguageStrings objects stores localized strings for everything that the
core system classes need to output to the user. This is so that people wishing
to localize MOZ to a new language don’t need to go looking for strings all over
the place.

‘The Help Object’
The Help object stores all the basic help information of the MOZ.

Chapter 4: Ex-DB Design 6

4 Ex-DB Design

The phrase “Ex-DB” refers to the idea that in MUD code, anything you can change
from within the MUD, without having to reset it or something, is “In-DB”, as in “in
the database”. By extension, anything that you cannot change from within the MUD is
“Ex-DB”, or “out of the database”.

MOZ is very different from other MUDs. The server, as such, is nearly non-existent;
it’s just a tiny bootstrap module (see [R2], page 2,see [R7], page 2), plus a few accessory
modules. This is because all things in Oz, including classes and objects, are first-class
values. Even the the class of an object can be changed on the fly.

4.1 The moz Program

The main program binary, moz, performs the following functions:

1. Compiles MozBase.class using MozCompilation

2. Compiles Storage.class using MozCompilation

3. Creates a new, empty Storage object by hand

4. Uses Storage to load itself into itself

5. Starts the Storage object

6. Asks the Storage object where to find the Server object (i.e. what the Server object’s
file number is).

7. Tells storage to load the server object

8. Starts the Server object

9. Holds until the server is shut down

10. Ask Storage to write everything to disk

11. Writes the Storage object to disk by hand.

4.2 The new moz Program

The new moz program creates a bare, clean, and very boring MOZ instance. It’s just like
the moz program except that it creates inital instantiations of all of the one-instance classes,
and it doesn’t load the Storage object from disk.

4.3 The Parsing Module

The Parsing module is a set of monadic parser combinators, which can be used to parse
any CFG in a pretty simple, straight-forward way. The may be more expressive than CFGs
with a bit of work, I don’t know. The code is basically a re-write of the code at Monadic
Parser Combinators, which is a lovely tutorial on monadic parsing.

This code will eventually be on MOGUL, when I manage to get around to it.

http://www.cs.nott.ac.uk/~gmh/bib.html#monparsing
http://www.cs.nott.ac.uk/~gmh/bib.html#monparsing

Chapter 4: Ex-DB Design 7

4.4 The EnhancedString Module

This is just a re-packaging of Duchier’s MOGUL String Package, because it’s nice to have
the better string handling capabilities around.

4.5 The Active Object Wrapper

The active object wrapper that MOZ uses is one of the more complicated pieces of code
in the MOZ, as well as the piece that may seem oddest to users of other object oriented
langauges. Also, it is the largest piece of ex-db code.

The active object wrapper is actually a procedure that is passed an object. It returns
an object record with full capabilities. An object record consists of a wrapper procedure,
the objects Oz name, and a capability set. All the wrapper procedure does is pass its one
argument to a port (an Oz port, not a TCP/IP port).

It’s what’s at the other end of that port that’s interesting. A thread is created to process
the stuff passed in the port. Note that this means that each object has exactly one thread
associated with it, and this thread is the only one that ever gets to affect the object directly.
This make things much easier as far as multi-threading issues go, as no locking needs to be
done within object methods.

This wrapper also gives insultion: no-one ever sees the object directly except this thread,
and this is what allows the capability security system to work.

Also, the thread can do other processing besides just calling the method it has been
passed. The most important part of this processing is capability processing. Basically,
what’s passed to the port is not the method name, it’s a record with an Oz name for a
label. This label is used to key a dictionary, and if a method name associated with it is
found, that method is called, if not, an error is returned. For more information, see See
Section 8.3 [Capability Implementation], page 23.

Another, much cooler, thing that the wrapper thread does is handle upgrade requests.
upgrade is a virtual method, in that it is called just like any other method in the wrapper,
using an Oz name capability, but it doesn’t exist in the object, rather it exists in the wrapper.
An upgrade call takes a class name and actually swaps out the object it’s wrapping for one
of that class! It calls toRecord and fromRecord to make sure information is preserved, and
lets the Storage object know the new class name. Then it just goes back to processing the
port like nothing happened, and from the point of view of every other object in the mud,
nothing did!

There are a couple of other miscellaneous things the wrapper does. In particular, it
inserts capability information into a toRecord call and extracts it from a fromRecord call.

When a new object is created, the capability dictionary is built using the class’s method-
List feature, with the addition of the special capability ’upgrade’, and a bunch of new Oz
names. In many cases, these are then overwritten by a fromRecord call.

The object itself will often need to know about its wrapper and capabilities, so that it
can inform other objects. This is handled by a method on every object in the MOZ called
activeObjectInform, which takes those two pieces of information as arguments, generally to
store on attributes. This method is called every time wrapper information is changed.

http://www.mozart-oz.org/mogul/info/duchier/string.html

Chapter 4: Ex-DB Design 8

The Storage object is also informed of this information at the same time.
See Section 5.1 [General Class Issues], page 9.

4.6 The MozCompilation Module

The MozCompilation module exports a single procedure, Compile, which takes the file name
to compile and the environment to compile it under. If the file contains only an expression,
such as a single functor, that is returned. The environment is given as a list of 2-tuples.
The first part of each 2-tuple is an atom representing the variable name under which that
aspect of the environment will be visible in the compilation. The second part is the actual
value being made so visible. Note that if one of the variables passed in to the compilation
is unbound, binding it in the compilation will effectively work as output.

If you didn’t understand that, that’s probably fine; this isn’t a user-servicable part of
the code, and I don’t really even understand it myself.

4.7 Object References

Dealing with the active object wrapper directly is difficult, due to having to keep track of a
seperate list of capabilities, so we wrap it in an Oz object. This wrapping is done, most of the
time anyways, by using the procedure MakeObjectReference, supplied by ActiveObject.oz.

For arguments, it takes an ActiveObject wrapper, a record of capabilities, and the Oz
name of the object (more for convenience than anything else), and returns an object which
runs the wrapper but also implements the methods "wrapper", "capabilities", and "oz-
Name", which simply return the information passed to them in both the first argument and
the argument with the same label as the method name.

Chapter 5: Class Definitions 9

5 Class Definitions

5.1 General Class Issues

5.1.1 The start Method

Every class has a start method, which is run at the end of the process of the object being
loaded in by Storage. Note that this is run any time the object is loaded, including as a
result of upgrade calls. Therefore, start must not assume, well, anything. For example,
the start method on a wandering puppet, that starts its wandering from room to room,
must not assume anything about what room it starts in.

Note that any initialization of anything that is not completely permanent should happen
using the start method, not the init method.

5.1.2 The init Method

Every class has an init method, which is run by Storage as part of the object creation and
wrapping process. The init method, as a minimum, takes an object record for Storage and
LanguageStrings and takes the object’s own Oz name.

NOTE : The init method should only be called once for the entire lifetime of the object.
Anything that is not absolutely permanent should not be passed to init. Also, an init
record can be passed to createObject on Storage, but be aware that Storage will change the
name of the record to init and tack on three arguments at the beginning for the Oz name
and the Storage and LanguageStrings object references.

5.1.3 The toRecord Method

Every class has a toRecord method, which returns a record containing all the aspects of
the object that must be persistent (see Section 6.1 [Loading And Unloading], page 17. Note
that reference to objects must be converted to their appropriate Oz names before being
made part of the record, because the actual object code cannot be stored on disk. The
names in question are only used for persistence purposes, and knowing them should give no
privilege1.

5.1.4 The fromRecord Method

Every class has a fromRecord method, which takes the output of toRecord and applies the
information therein to the object (see Section 6.1 [Loading And Unloading], page 17). Oz
names representing objects are turned back into object references as part of this process.

1 It is possible that the current method of doing toRecord, in that it is defined on MozBase, will turn
out to be a security hole, because objects can lie about themselves. If so, it should be moved onto
ActiveObject.

Chapter 5: Class Definitions 10

5.1.5 toRecord, fromRecord, and exports

The toRecord method uses a feature called exports, which is a list of 2-tuples of the format
Name#Type, where both Name and Type are atoms. The former is the attribute name to
be saved, and the latter is the type of the attribute. Note that these types are specific to
MOZ, and not Oz itself. The Type information is used to determine when special processing
is needed to be able to safely save an attribute to disk. For example, toRecord uses the
Type field to look for object references, which need special processing.

It is very important that the export list contain only the names of attributes that
contain non-stateful data, or else the save will fail. Stateful data is data that is specific to
a particular invocation of a running program, such as open file handles. Oz programmers
also refer to stateful data as ’resources’.

Simple records, atoms, Oz names, and procedures are all safe.

Threads, file handles, and any other value that isn’t guaranteed to be persistent, are all
unsafe to save. Any attribute that stores this form of data either must not be named in
the export list, or there must be special code in toRecord to deal with that Type, such as
there is for the type called objectRef, which is for references to objects.

There is also an analogous featExports list for saving the value of features. Since
features are write-once values, an object that has a featExports list should only have from-
Record called on it once. Any subsequent calls once the features have been initialized will
fail.

5.1.6 Recognized exports Types in toRecord and fromRecord

Type values that currently mean somethng: dict, objectRefDict, notPersistent, and
objectRef. Anything else will be treated as in no way special. This means if it has non-
persistent data, an error will result.

The standard toRecord/fromRecord methods have a Type objectRef that has a fairly
specialized format. These attributes are used to refer to other objects in the MOZ. It
expects the attribute to which it refers to be a record with the field names ozName, wrapper
and capabilities which point to the Oz name of the object, the active object wrapper
procedure and the capabilities that this object has on the object being referenced. The
list of capabilities is a list of methods on the object pointed to by the objectRef that the
holder of the objectRef can use.

Note that this means that an object cannot save persistently information about an object
whose Oz name it cannot retrieve, but this should not be a limitation in general.

The Type notPersistent is used to pass non-persistent data, such as the output port
for a Player object to send data to the player, through upgrade calls. It is not used for
toRecord calls for data destined to be writen to disk, as an error will result when trying to
store that type of data (as the concept makes very little sense).

Chapter 5: Class Definitions 11

5.1.6.1 Examples

Note that these examples are not valid MOZ code, or even Oz code really. They are
just intended to give a bit of a visual idea of how toRecord, fromRecord, exports and
objectRef-Type attributes interact.

• A simple object: DrinkingGlass173

To store DrinkingGlass173 to disk when it is not being used, we use toRecord. In turn,
toRecord uses exports and the objectRef Type. This is what part of the object it
might look like:

exports list:
name#string
description#string
storageRef#objectRef

Note that name is not a specially recognized attribute in Oz or MOZ; it is user-defined,
and objects need not have it. In MOZ, most objects do in fact have a name, but it is
not required.

An objectRef is an Oz object itself, wrapping the ActiveObject wrapper for easier
use. The information it contains consists of the wrapper for the object it refers to, the
object’s ozName, and some capabilities on that object, which we will represent like so:

storageRef:
wrapper
ozName
capabilities: capabilities(

createObject
objectRefFromRecord
getClass
upgradeObject

)

Note that every object that gets save to disk has at least one entry in its exports list
that is of Type objectRef: storageRef, which is used to allow the object to create
other objects and load class code and such.

• A complex object: “Robin’s Room”

To store “Robin’s Room” we use the same toRecord methed. This is what part of the
object it might look like:

exports list:
name#string
description#string
storageRef#objectRef
contents#objectRefDict

.

.

.

Chapter 5: Class Definitions 12

Contents: contents(
blueChair
redChair
drinkingGlass173

)

.

.

.

BlueChair: objectRef(
wrapper
ozName
capabilities: capabilities(

getName
getDescription

)
)

5.1.7 methodList

Every class has a methodList feature that is a list of all the method names that are used
outside the class. This is used by the active object wrapper, and is safe since nothing but the
active object wrapper ever talks directly to the object anyways. Note that the methodList
feature should not include upgrade, as this is added in by the active object wrapper.

All objects are dynamically upgradeable a la A dynamically-extensible server2

5.2 The Class Hierarchy

This is a basic outline of which classes descend from which other classes.

• Section 5.3 [class MozBase], page 13
• Section 5.4 [class Storage], page 13
• Section 5.5 [class Server], page 13
• Section 5.6 [class Described], page 14

• Section 5.9 [class Location], page 14
• Section 5.13 [class Container], page 14, also a child of Section 5.8 [class

Mobile], page 14
• Section 5.10 [class Player], page 14, also a child of Section 5.8 [class

Mobile], page 14
• Section 5.16 [class Terminus], page 15

2 Note that this also makes them stationary, which may cause problems later (although I don’t think so)
and means that what’s actually being passed around are procedures, not objects. For more information,
see See Section 4.5 [The Active Object Wrapper], page 7.

http://www.mozart-oz.org/documentation/dstutorial/node3.html#label199

Chapter 5: Class Definitions 13

• Section 5.7 [class Located], page 14
• Section 5.8 [class Mobile], page 14

• Section 5.13 [class Container], page 14, also a child of Section 5.9
[class Location], page 14

• Section 5.10 [class Player], page 14, also a child of Section 5.9 [class
Location], page 14
• Section 5.11 [class Wizard], page 14
• Section 5.12 [class Puppet], page 14

• Section 5.19 [class Control], page 16
• Section 5.20 [class ClassControl], page 16

• Section 5.14 [class Exit], page 15
• Section 5.15 [class Gate], page 15

• Section 5.17 [class Connection], page 15
• Section 5.18 [class Parser], page 16

5.3 class MozBase

An extension of BaseObject, and an ancestor of every other class. MozBase has an ’ozname’
feature, and the init call initializes ’ozname’ to {NewName}, as well as storing a reference
to the Storage class. MozBase also has a method ’ozname’ that returns this name. All of
the methods listed in Section 5.1 [General Class Issues], page 9 are first defined in MozBase.

MozBase will not usually be directly instantiated.

5.4 class Storage

class Storage deals with the saving and loading of classes and objects, including doing Active
Object wrapping (see Section 4.5 [The Active Object Wrapper], page 7). It also provides
support for mapping between file names, Oz names, and object references (see Section 6.2
[Associations], page 17).

In fact, the Storage class does an awful lot of things. It passes initial capabilities to
the object and remembers which class each object belongs to (see Section 8.1 [Initial Ca-
pabilities], page 22). It stores capabilitites on each object for purposes of Wizardry (see
Section 8.5 [Wizardry], page 25). It runs the start, init, toRecord and fromRecord
methods on objects and is usually the only object to do so.

5.5 class Server

The Server object just (of which there is only one in each MOZ) sits and watches the
MOZ’s TCP/Ip port. When it recieves a connection, it instantiates a new object of class
Connection and calls the start method on that object. It also instantiates an object of
class Parser. It then connects both the Connection and Parser objects to the Player object
so that the player’s commands can be processed.

Chapter 5: Class Definitions 14

5.6 class Described

The Described class is not usually instantiated. It adds name- and description-related
capabilities to MozBase. It has no location or contents attributes.

5.7 class Located

The Located class expands upon the Described class to add location information, and read-
only operations upon that information.

5.8 class Mobile

The Mobile class expands upon the Located class to add write operations on location
information.

5.9 class Location

The Location class expands upon the Located class to add contents information, and oper-
ations upon that information.

5.10 class Player

The player object holds all the attributes, methods and verbs associated with being a player
of the MOZ. The Parser object associated with each player is given full capabilities on the
Player object in question.

5.11 class Wizard

A Wizard is just a user with more extensive capabilities. The Wizard class provides com-
mands to use those capabilities more effectively, although being of the Wizard class does
not give one Wizardly powers, nor is the converse true.

5.12 class Puppet

The Puppet class expands the Player class into a form suitable for use as an automaton,
and includes some basic ability to respond to its master’s commands.

5.13 class Container

The Container class is a merging of the Mobile and Location classes, i.e. a Mobile with
contents.

Chapter 5: Class Definitions 15

5.14 class Exit

The Exit class connects two locations. Each Exit is a one-way pointer to the destination.
An Exit object in a room will respond to verbs such as ’go’ and its own name, and put
players through to the destination location.

Since it is both an important operation and one that exemplifies a lot of issues, here’s
what happens when the player wants to move from one location to another:

1. The player’s command is parsed and, eventually, a ’go’ method (or whatever) is called
on the exit.

2. The exit asks the current location to give the player to the destination location. The
process goes something like this:

1. Updates the player object’s location information with a given argument.

2. Gives capabilities on the player to the remote location.

3. Removes the player from itself.

3. The exit decides if it wants to allow the operation. This may include examining the
player’s inventory for a key object of some kind.

4. Note, however, that the exit itself does not have the capabilities on the player required
to do the movement; those belong to the location itself.

5.15 class Gate

The Gate class expands on the Exit class with the ability to use an Oz ticket to connect to
a room in another MOZ. It gets this ticket from a Terminus class object.

A Gate must be blessed by a Wizard to be able to connect using tickets.

5.16 class Terminus

A Terminus class object is just a Location with the added ability to generate an Oz ticket
for itself, to be used by a Gate.

A Terminus must be blessed by a Wizard to be able to produce tickets.

5.17 class Connection

Objects of class Connection have no Active Object wrapping, as they are created on the fly
be the server.

They accept input solely from a TCP/IP port which they parse very lightly and pass to
the parser object. By ’parse’ I mean, basically, break into lines. They also accept streams
from the Server object, which the Server treats as output strings and passes back out the
TCP/IP port.

Chapter 5: Class Definitions 16

5.18 class Parser

Objects of class Parser have no Active Object wrapping, as they are created on the fly by
the server.

There is one Parser per player connection. It accepts input from the Connection object,
parses it, and goes looking for verbs that match it, which are then called with the parsed
arguments.

There are, however, situations in which entering new commands should not be possible.
In particular, situations in which user input is required to complete a command, such as a
yes/no dialog. For these occurences, a procedure on the Parser object is passed down the
call chain. This procedure can be used to suck additional input. It uses a simple capability
which is revoked as soon as the procedure returns back to the parser.

5.19 class Control

This class is used to create an ohat can be used to control another object. Every time a
player creates an object, another object of class Control is also created Storage, and is given
the ability to retrieve perfect capabilities for the object the player asked for. This control
object is then placed in the player’s inventory, while the object the player asked for is left
unlocated.

A second copy of the control rod is placed in Limbo, for Wizardly use.
Please note that Control is used to perform mutations, and as such cannot itself be

mutated. This is quite deliberate: mutating a Control class object could very easily give
access to specialized capabilities.

5.20 class ClassControl

This class is used to write to and recompile classes created by users. It is created when the
player runs a "create class" command.

Like the Control class, objects of the ClassControl class cannot, and should not, be
mutated.

Chapter 6: Storage Issues 17

6 Storage Issues

6.1 Loading And Unloading

The Storage object for the MOZ is the first object to be run. It loads all the classes it can
find when its start method is run and sets up dictionaries and such so other objects can
find each other.

MOZ is disk based, that is, there is no loading of objects at the beginning of the MOZ,
besides some of the one-instance objects.

This turns out to be quite trivial in Oz: when objects are loaded, they are pointed to by a
weak dictionary. When they are no longer pointed to by anything else, the weak dictionary
facility is used to save them to disk.

After the main program loads the Storage object, it loads the Server object and runs
that. Everything else is loaded from there as needed.

When an object is loaded, any of its attributes that are of type objectRef (as defined
in the exports list) are instantiated not with the appropriate object wrapper but with a
procedure defined by the Storage object that checks if the object is currently actually loaded
from disk. If it is, the procedure returns the wrapper. If not, the procedure loads the object
from disk and then returns the wrapper if not.

A full-shutdown save process goes as follows (individual object saves can be inferred):
for each entry in the dictionary that maps objects to file names, call the object’s toRecord
and save the result of that to the appropriately named file.

Objects are stored in files named <num>.obj, where <num> is a number that is only used
internally. These files are saved in direcories named after the class of the object.

6.2 Associations

Objects and classes are stored in files, and must be stably accessible between invocations of
moz. Therefore objects and classes must have static names which are used to refer to them
by other objects within the MOZ, and there must be associations between those names
and the objects themselves (well, the active object wrappers really, see Section 4.5 [The
Active Object Wrapper], page 7), as well as between the file names the objects are stored in
and their MOz names (or the objects themselves). All these mappings should be two-way,
but mappings cannot be made on procedures or objects or classes, so in some cases large
searches must be performed. Oh well.

Since class Storage is in the best position to obtain this information, and it has nothing
else to do after startup anyways except swap objects to and from disk and answer capability
questions, associations will be stored on the MOZs Storage object.

As can be seen in the MozBase def, all objects have a stateless NewName associated
with them, which is set at object creation using a name created by Storage, and passed to
init on the object. class Storage has a dictionary to associate this name with the actual
objects: ’oznameObj’.

Chapter 6: Storage Issues 18

Since there’s no real point worrying about making up file names for objects, and since
I’d like to not require uniqueness of object ’names’ (distinct from the Oz-level name for
the object), I decided to just have the object files be named with incremental integers with
a .obj suffix. A dictionary ’fileOzName’ associates these integers with the unique object
names. It would have been an array, but arrays in Oz can’t grow without rather a lot of
work. A dictionary ’oznameFile’ provides the reverse mapping.

Objects are stored as records (using toRecord and fromRecord). One of the things that
is in those lists is the class identifier, which we might as well have be a name. That name
must be unique. The file name the classes are stored in is just that name with a .class
suffix. The file does not store a pickle of the class: it stores the actual source of the class.
Otherwise it would be very difficult to present users with the source of classes, since Oz
does not appear to have a decompilation feature.

The association between class names and the classes themselves are handled by the
dictionary ’nameToClass’.

It is useful in the extreme to store on Storage what class each object belongs to, so that we
can certify objects as being instantiations of a known-safe class. So, at load time and during
upgrades the class of any given object is store in the dictionary ’oznameToClassName’.

Also, for wizardly purposes it is necessary for the Storage object to store a list of the
capabilities available on each object in the MOZ. This are updated at load and upgrade
time, and are stored in the dictionary ’oznameToCapabilities’.

It would be incredibly inneficient to actually trace these dictionaries for every call to
every method not on the local object, and it would make things much more complicated
when dealing with objects from another MOZ See [R1], page 2, so these associations are,
for the most part, only used at load and save time. toRecord, fromRecord and upgrade
use these assocations, and that’s pretty much it, except for Wizardly usage, which is not
discussed here.

Chapter 7: MOZ Records 19

7 MOZ Records

There are several home-grown record formats that are important to the MOZ, and they are
specified here.

7.1 object records

The object record type is fairly simple:
object(

wrapper: <P/2 Wrapper>
ozName: <Name>
capabilities: capabilities(

init: <Name> start: <Name> stop: <Name> ...
)

)

It just holds the active object wrapper, the ozName associated with the object, and the
capability list. The only reason for the ozName field is that having that information handy
is amazingly Useful for storing the object record to disk.

An example of how to make an object record, from within an object, for giving to another
object1:

object(
wrapper: self.wrapper
ozName: @ozName
capabilities: capabilities(

createObject:
self.capabilityDict.createObject

objectRefFromRecord:
self.capabilityDict.objectRefFromRecord

getClass:
self.capabilityDict.getClass

upgradeObject:
self.capabilityDict.upgradeObject
)

)

7.2 verbs records

Verbs records are rather complex:
allVerbs(

en: verbs(
get: verb(

method: get
parses: [

1 This really belongs in the programmer’s manual.

Chapter 7: MOZ Records 20

exampleParseName(
leftMostPreposition: lmp(

prep: [’from’ ’out of’]
leftSide: lhs(

objectName: getObject
)
rightSide: rhs(

objectName: fromObject
)

)
]

)
)

)
lb: verbs(

cpacu: verb(
method: get
parses: [

exampleParseName(
objectName: getObject
objectName: fromObject

)
]

)
)

)

The outermost record is rather like the strings record. Each language’s sub-record con-
tains one field for each known verb. Each verb record contains the method that verb is
associated with and a list of parse records2, which contains instructions for parsing the user
input (less the first word, which is always the verb) and turning it into arguments that the
verb method will understand.

The verb record is used as an index on a dictionary which is used to store the parsing we
have done and to make sure that we don’t parse the same input the same way more than
once if we can avoid it.

The example above would be appropriate on an object with a method like this:
meth get(getObject: GetObject fromObject: FromObject)
...
end

7.3 string records

String records are quite simple:

2 The parse record part of the verb records is in such a drastic state of flux right now that I’m not
even going to try to document it. It eventually needs its own section, but that might belong in the
programmer’s manual.

Chapter 7: MOZ Records 21

string(
en: "This is the initial room. It is very boring."
lb: "ti pamoi kumfa .i .a’ucu’i to’e cinri"

)

As you can see, one field for each supported language, with a string in the field. Nothing
special.

Chapter 8: Security In Detail 22

8 Security In Detail

8.1 Initial Capabilities

Note that this section is quite likely to vary depending on the design of the specific MOZ
in question. What is described here is simply from the perspective of the base MOZ server.

In general, a created object should be passed, as an init argument, the smallest number
of capabilities possible. At a minimum, this consists of the following:
• A list of capabilities on the Storage object, so that new objects can be created. This

would include a way to list class names as well as a direct object creation call.
• A class testing capability from the Storage object. This takes an object reference and

returns true if and only if the object in question is an instance of one of the built-in or
otherwise judged safe Oz classes. This is used to warn players that they might be in
trouble if they go into, say, rooms of other classes. Note that Wizards can add to this
list, and should only do so if they’ve read the code in question.

• A listContents capability on the room the object is created in. Note that this returns
a list of requestCapability capabilities on the contents, i.e. a set of functions that can
be used to ask for other capabilities

• A listExits capability on the room the object is created in.
• A requestCapability capability on the room the object is created in.

That’s a pretty short list, but it is actually quite sufficient, as we’ll see in the next
section. Note that this glosses over some issues, like the capabilities shared between the
Player, Parser, and Connection objects, but that’s a little low level for this discussion.

Note that the requestCapability capability on the starting room allows the object to get
the other capabilities on the starting room that it starts with; they are provided initially
simply to save time.

8.2 Getting More Capabilities

Note that this section is quite likely to vary depending on the design on the specific MOZ
in question. This is simply from the perspective of the base MOZ server.

So, you’re a newly created player in a MOZ, with the capablities listed in the previous
section. You (or rather, the code underlying the actions) want to say something. Here are
the steps involved:
• Call listContents on the current room. This returns a list of requestCapability capa-

bilities for all objects in the current room.
• Call each of those capabilities, requesting a ’tell’ capability. Some of them will refuse.

That’s fine; if they don’t want to talk to you that’s their business.
• Run the tell capability on each of them with what it is that you have to say.

Note that talking is not handled by the room, in contrast to most MUDs. This is
because in a capability based system, we want to avoid testing as much as possible, the
testing in this case being whether the object wants to hear your tells or not. This way you

Chapter 8: Security In Detail 23

can cache the capabilities for all the objects in the room you’re in, so the test only gets run
once (when you request the capability). Note, again, that certain things are glossed over,
like retries for failed cached tell calls: the object may have revoked that capability, but may
not mind giving it to you again.

Note further that although there are capabilities given to you for every object in the
room, this gives you no information other than that an object is there; not even the name
of the object or any description information can be given to you if the object does not allow
it (unless the room has been coded to ’cheat’ and store capabilities it is passed and give
them away freely). This is how ’invisible’ objects can be implemented, although you can
still inform the user that an ’invisible’ object seems to be in the room.

Another example: you want to move to a roomed joined to this one by an exit.

• Call the listExits capability, use the capabilities provided to request name capabilities,
check the names, figure out which exit you want.

• Request the use capability on the exit. If you don’t get it, well, you can’t go that way.
• Call the use capability, pass it a capability on yourself allowing updating of your location

information (i.e. the capablities on the current room). Note that the updater in
question should test whatever it gets passed, to make sure the capabilities it was given
actually work!

• The exit should already have an update capability on the room it’s attached to, which
it uses to remove you from the room’s contents list, and add you to contents list on
the other side. It then calls your update capability with the information from the new
room. Any error causes everything to be changed back.

• Revoke the update capability you passed the exit, stopping further updates. In fact,
the update capability shoud do this itself.

There is one other, rather different, way to get new capabilities: creating a new object
returns a list of all available capabilites on that object.

8.3 Capability Implementation

Capabilities are normally going to be stored in records on various attributes. The format
is going to be: capabilities(foo:<ozname> bar:<ozname>), where foo and bar are methods
on the object. Theses lists will be seperate from the attribute holding the reference to the
object wrapper procedure. So, for example, the list of exits from the current location would
be retrieved as follows:

{@location.wrapper @locationCapabilities.listExits listExits($)}

Note that this means there are two attrs for every capability list. When that request for
listExits comes in, the object wrapper selects the appropriate method from its dictionary
which is keyed on the Oz names of the methods, and calls that method.

This way of doing things unfortunately breaks the abstraction of treating the object
wrapper as though it were just another object. It was possible to make it much cleaner, but
it made saving objects a gigantic pain and added a bunch of code. There were other ways
of handling it without those drawbacks, but they all put a fair bit of knowledge burden on
the coder in terms of understanding how Oz constructs records and such.

Chapter 8: Security In Detail 24

If you really want to make a function that returns a function that acts just like a normal
object (which I don’t particularily recommend, by the way: it’ll probably slow things down
a bit), here’s what one would look like:

proc {CapProcMaker ObjProc CapList ?CapProc}
proc {CapProc Meth}

{ObjProc CapList.{Label Meth} Meth}
end

end

Note that it is very important that you not try to save this procedure on your object (i.e.
do not add it to the exports variable of the class), as this will cause the saving to fail. This
means that if you are storing this procedure on an attr you need to check for its existence
(probably using IsDet or Value.type) pretty much every time you use it, or make sure it
gets recreated every time your object is reloaded (i.e., create it in your start method).

8.4 Persistence

Persistence is something that is entirely normal in MUDs, so this whole section may seem
amazingly obvious to those of you used to MUD programming. However, it is very abnormal
in operating systems, but see EROS.

In an operating system, if you want to open a file, you go and get a list of files, then ask
for permission to open it. This makes it easy to deal with reboots: you just go look for the
file again.

Obviously, this can’t work in a capability system: where do you get the list of files from?
In the context of a MUD, there would need to be some way to search through all the rooms
to find the one you were in to ask for capabilities on that room. There is no such ability.
OK, that’s not quite true, the Storage object can, and does, have such an ability, but only
for purposes of implementing persistence.

So, the mud simply stores everything. Every few minutes, each object is written to disk,
along with all the capabilities it has acquired. So there is no rebooting, really: after a crash
or whatever, the MOZ is brought back up as though nothing had changed.

Actually, that may not be quite true: only the capabilities that are saved as part of
running toRecord on that class are stored, so stuff that is only being stored in running
code or cache attrs is not preserved.

Capabilities, because they are simply implemented as a record of Oz names, are stored
as per normal by the Storage object. The object wrapper handles are turned into Oz names
on the way out and converted back on the way in.

For that to work, the newly loaded object that the capability is for must remeber what
the names were that it had associated with various methods, especially since this is handled
in the wrapper. The way that this is done is to simply have the information be stored as
a dictionary in the wrapper; the wrapper has code in it to intercept the toRecord call and
add the capability information, and also to intercept the fromRecord call and extract it
again.

http://www.eros-os.org/

Chapter 8: Security In Detail 25

8.5 Wizardry

It would be possible to have a capability based system with no user having more power than
any other user, in other words no Wizards, no Gods, no root. Of course, because of the
nature of capabilities there’s nothing to stop a user from setting up their own little domain
in which they have ultimate power, but that’s not the same.

However, as a design decision I feel that that’s a bad idea. Capabilities, as previously
stated, make it rather easy for users to screw up if they try their hand at programming, or
go into an area owned by a malicious user and say ’yes’ to a lot of request messages and
end up in a really bad way. I would like there to be a way for them to get un-screwed.

Therefore, MOZ supports Wizardry by default. Being a Wizard is very simple: you have
full capabilities on the Storage object, always has the most up-to-date set of capabilities for
every object in the MOZ.

Note that as the wrapper code is just about the only ex-DB code, it is impossible to
circumvent the fact that the wrapper code will report capability changes to the Storage
object.

Note that users can get around this by creating objects which they do not report to the
server. This has the substantial disadvantage that they will be lost upon server restart,
as normal users are not given capabilities to anything that would allow them to store the
information.

Also, the wrapper tells Storage to update this information on each change.

Chapter 9: Unsorted 26

9 Unsorted

• As a stylistic issue, all methods should use full record field names for their arguments.
• I am currently of the belief that all special user capabilities should be stored on objects

(i.e. keys and such), primarily because any other method is just too damned easy to
spoof. Here’s some stuff about another way of doing it.
• It is useful to have capablities on objects that are, more or less, automatically

activated (i.e. a door that only you can walk through). MOZ calls such capabilities
’keys’.

• Keys are stored on their own attribute on the user.
• When a verb is call, a requestKey method is passed. Actually passing a key requires

asking the user first.
• Keys are in a dictionary indexed by ozName; ideally there would be some way to

verify the ozName of the calling object.
• However, having special capabilites on objects (which are presumably carried) leads to

some issues with things like a dragon who doesn’t eat anyone wearing the Gauntlet Of
Might, or whatever. Ways of handling this are below. I have not picked yet, although
I have a bit of a preference for a ’wear’ verb.
• Verb transparency to objects in inventory, which could cause problems if you pick

up the wrong thing. But this could be selectable, i.e. some objects are allowed
to be verb-trasparent. The easiest way would be a ’wear’ command, such that
objects that are word are checked for verbs.

• Extensible verb lists (i.e. an attr?) in which an object field is part of the verb
definition. This way the Gauntlet of Might would add a verb to the *player* (with
permission, of course) called ’challengedBy’. Calling challengedBy(arg1: <the
dragon in question>) returns a value that causes the dragon to calm down.

• This was in the class Parser section. I was smoking crack.
Note that the verb call can immediately thread off, and should almost
always do so if any non-trivial computation is done, since output is handled
by an Oz port. This will be particularily important when in-game thread
management is implemented; threading off will allow the player to kill
threads if necessary, as commands can still get through.

There is no way to get a list of threads in Oz, so what needs to be done at some point
is to hack the parser object to thread off all verbs and save their thread ids on the
player object, so that the player can kill them.

• I have no idea where to put this. Movement of an object is three seperate things, in
terms of capabilities: changing of where the object’s location attr points, and changing
the contents list of the before *and* after objects. Therefore, capabilities on three
objects are involved. This should be discussed, both as a capability example, and an
implementation detail. Maybe it’s time for implementation notes?

	
	Requirements
	Security Overview
	One-Instance Classes
	Ex-DB Design
	The moz Program
	The new_moz Program
	The Parsing Module
	The EnhancedString Module
	The Active Object Wrapper
	The MozCompilation Module
	Object References

	Class Definitions
	General Class Issues
	The start Method
	The init Method
	The toRecord Method
	The fromRecord Method
	toRecord, fromRecord, and exports
	Recognized exports Types in toRecord and fromRecord
	Examples

	methodList

	The Class Hierarchy
	class MozBase
	class Storage
	class Server
	class Described
	class Located
	class Mobile
	class Location
	class Player
	class Wizard
	class Puppet
	class Container
	class Exit
	class Gate
	class Terminus
	class Connection
	class Parser
	class Control
	class ClassControl

	Storage Issues
	Loading And Unloading
	Associations

	MOZ Records
	object records
	verbs records
	string records

	Security In Detail
	Initial Capabilities
	Getting More Capabilities
	Capability Implementation
	Persistence
	Wizardry

	Unsorted

